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Thermal effects on the conduction of molecular junctions have v
recently been the focus of substantial theoretical effaithile 300
conduction measurements of single molecules have been previously
reportec? none have dealt with thermal effects. In this Communica- 150
tion, we report the first experimental demonstration of these thermal
effects at the individual-molecule levéSpecifically, we show the
effects of thermal activation on the conduction of a molecular
junction composed of chemisorbed individual 1-nitro-2,5-di(phe-
nylethynyl-4-mercapto)benzene moleculd3 i(ndependently con- 150
figured across a gold electrode gap with-A8 bonded contacts
(see Figure 1).

Junctions were fabricated using published procedidrésVires
defined by e-beam lithography and coated with a monolayer formed
from 14 were broken by electromigration at a temperature of 13 K -450 |
by ramping a voltage across the wires until a sudden drop in their h . ) . L . ) R X
conductivity occurred as a result of their breaking. The resulting -1.0 -0.5 0.0 0.5 1.0
current at this point was governed by tunneling across the gap. All Bias (Volt)
measurements were done in a temperature-controlled cryogeniCrigure 1. A set of -V curves measured on one of the junctions is shown
chamber. The yield of devices showing molecular effects (see here for several representative temperatures. The observed asymmetry is
discussion below) was10%5 seen in all junctions with a bridging molecule (see ref 5). Because the

Molecule 1 is a previously studied conjugatedsystem “mo- molecule is not sy_mmetrlcal, this suggests, as in ref 2e, that elther_a single

- . molecule is bridging the gap between the two Au leads or possibly the
lecular wire” and was chosen as a representative molecule to studyejectromigration gap opening event induces a small ensemble of a few
temperature effects on conduction. The structural properties of its similarly oriented molecules to bridge.

self-assembled monolayer have been studied in degtiderstand-

I (nA)

ing charge transmission through this specific molecule should also 100K 25K 13K

help to elucidate the basis for its variable negative differential mi:é\‘, ' ) ' ) ' .

resistance (NDR) propertiés. -16 4 5.“,:-.‘;‘_:-1 = z
I—V measurements were taken at a temperature range-of 13 h;:: = ]

296 K over at1 V bias range. At higher bias values, the junctions
showed tendencies to become unstable under repeated cycling. A
representative set &f-V curves at different temperatures is shown 220
in Figure 1. The magnitude of the measured currents is quite similar
to those reported in previous studies of isolated single molecules
with similar structure and which are bonded between gold
contactge In accordance with theoretical predictiols| an
Arrhenius plot for a typical junction (Figure 2) reveals a charac-
teristic transition from temperature-independent behavior afllow
where conduction is dominated by coherent superexchange tun-
neling, to incoherent temperature-dependent hopping behavior at
high T.” This result constitutes the first experimental observation -28 Y v r Y Y v v
of this phenomenon for individual molecules. 0 20 40 1 60 80
The transition from coherent to incoherent behavior is shifted 1000/T K°)
to lower temperatures with increasing bias. There are two comple- Figure 2. Arrhenius plots of Ln current (amperes) versus invergs )

; e P at different bias voltages showing a transition in conductance from
mentary reasons for this behavior: (i) This is a natural outcome of T-independent tunneling behavior at Iawo a thermally activated process

the correlation .in Figure 2 which shows thag, the activation at highT. The bias increment between curves is 0.1 V, and the bias of the

energy for hopping}, AEgarrier = —(L/K)[d(In 1)/d(1/T)]}, decreases lowest curve is 0.1 V. The transition temperatures between coherent and
as a function of bias. As the hopping mechanism is proportional to incoherent behavior are marked by the intersection between lines; see, for
a Boltzmann term of the form expAE/kT),2 it is initiated at a example, the arrow for 0.3 V.

lower bath temperature @& decreases. (ii) Due to inelastic effects,
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part of thelV power applied on the junction dissipates as heat on
f
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molecule(s) increases, and the transition to incoherent tunneling isvia electronr-phonon scattering. These effects should be manifested
induced at a lower bath temperature. Heat dissipation in the in the inelastic electron tunneling spectra at low bias, and such
molecule then induces transition between the two conduction studies are currently in progress in our laboratory.

regimes.

For bias values=0.5 V, all of the activated processes have the
same slope. Such behavior, whichTiglependent andf-indepen-
dent, is characteristic of ohmic processes. This behavior can be
described byl ~ V[exp(—c/T)], where c is a characteristic
temperature of the systefrAnalysis of our data yields = 55 K,
in good agreement with the transition temperature in Figure 2. On
the basis of theoretical calculations foand similar molecule®—¢
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